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Abstract

The aim of this paper is to study in D = 4 the general framework providing
various κ-deformations of field oscillators and consider the commutator
function of the corresponding κ-deformed free fields. In order to obtain
free κ-deformed quantum fields (with c-number commutators) we proposed
earlier a particular model of a κ-deformed oscillator algebra (Daszkiewicz M,
Lukierski J and Woronowicz M 2008 Mod. Phys. Lett. A 23 9 (arXiv:hep-
th/0703200)) and the modification of κ-star product (Daszkiewicz M, Lukierski
J, Woronowicz M 2008 Phys. Rev. D 77 105007 (arXiv:0708.1561 [hep-th])),
implementing in the product of two quantum fields the change of standard
κ-deformed mass-shell conditions. We recall here that other different models
of κ-deformed oscillators recently introduced in Arzano M and Marciano A
(2007 Phys. Rev. D 76 125005 (arXiv:0707.1329 [hep-th])), Young C A S
and Zegers R (2008 Nucl. Phys. B 797 537 (arXiv: 0711.2206 [hep-th])),
Young C A S and Zegers R (2008 arXiv: 0803.2659 [hep-th]) are defined on
a standard κ-deformed mass shell. In this paper, we consider the most general
κ-deformed field oscillators, parametrized by a set of arbitrary functions in
3-momentum space. First, we study the fields with the κ-deformed oscillators
defined on the standard κ-deformed mass shell, and argue that for any such
choice of a κ-deformed field oscillators algebra we do not obtain the free
quantum κ-deformed fields with the c-number commutators. Further, we study
κ-deformed quantum fields with the modified κ-star product and derive a large
class of κ-oscillators defined on a suitably modified κ-deformed mass shell.
We obtain a large class of κ-deformed statistics depending on six arbitrary
functions which all provide the c-number field commutator functions. This
general class of κ-oscillators can be described by the composition of suitably
defined κ-multiplications and the κ-deformation of the flip operator.
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1. Introduction

The standard relativistic local quantum fields on Minkowski space provide a basic tool for the
description of fundamental interactions. If we take into consideration the quantum gravity
effects such as classical description break down at Planck distances (≈10−33 cm), it is quite
plausible that the space time becomes noncomutative (see e.g. [6, 7]). The κ-deformation of
the Minkowski space [8]–[10] and the corresponding quantum κ-deformation of relativistic
symmetries (see e.g. [9, 11, 12]) provide a fundamental mass scale and possible tools for the
description of the Planckian quantum-gravitational regime.

At present an important task is the construction of κ-deformed quantum field theory on
κ-deformed Minkowski space. In contrast with a simpler, recently studied case of θ -deformed
symmetries (with constant commutator [x̂μ, x̂ν] = θμν ; see e.g. [13, 14]), the κ-deformation
of relativistic symmetries is not described by a twist factor1, and for the κ-Poincaré algebra the
universal R-matrix is not known. We can therefore apply mainly the technique of star product
(for application to κ-deformation see e.g. [17]–[22]) as representing the κ-deformation of
space time.

1.1. Summary of the previous results [1, 2, 25]

The main aim of our scheme presented earlier in [1, 2, 25] was the construction of free quantum
κ-deformed fields characterized by the c-number commutator function2. It should be stressed
that for such free κ-deformed quantum fields all other properties known from the standard
free quantum field theory as the notion of locality, microcausality, the structure of Fock space,
or kinematic independence of field excitations defining the multi-particle states are modified.
The c-number commutator of quantum κ-deformed fields is obtained by the interplay of the
two following sources of noncommutativity: the quantum nature of space time and the specific
κ-deformation of the field oscillators algebra.

1.1.1. Noncommutativity of space time. We replace the standard quantum field arguments
xμ by κ-Minkowski noncommutative coordinates x̂μ

[x̂0, x̂i] = i

κ
x̂i, [x̂i , x̂j ] = 0. (1)

One can introduce the Fourier expansion of the κ-deformed free quantum fields

ϕ̂(x̂) = 1

(2π)
3
2

∫
d4pÂ(p0, �p)δ

(
C2

κ (�p, p0) − M2) ...eipμx̂μ ..., (2)

where the symmetrized κ-deformed plane wave looks as follows (see e.g. [26]):
...eipμx̂μ ... = e

i
2 p0x̂0 eipi x̂i e

i
2 p0x̂0 . (3)

The operators Â(p0, �p) describe the quantized field oscillators and Cκ
2 (�p, p0) represents the

κ-deformed mass square Casimir

Cκ
2 (�p, p0) =

(
2κ sinh

(p0

2κ

))2
− �p2, (4)

defining the κ-deformed mass-shell condition

Cκ
2 (�p, p0) − M2 = 0, (5)

1 We restrict ourselves here to twists T ∈ U(P4) ⊗ U(P4) where U(P4) describes the enveloping D = 4 Poincaré
algebra. For twists not satisfying this condition see [15, 16].
2 We extend to noncommutative quantum fields the known definition of (generalized) free fields as described by a
c-number commutator (see e.g. [23, 24]).
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which implies the energy–momentum dispersion relation

p0 = ±ωκ(�p), (6)

where

ωκ(�p) = 2κ arcsinh

(
ω(�p)

2κ

)
; ω(�p) =

√
�p2 + M2. (7)

For the discussion of κ-deformed free fields we introduce the operator-valued Weyl
homomorphism

ϕ̂(x̂) ↔ ϕ̂(x), ϕ̂(ŷ) ↔ ϕ̂(y), (8)

where the relations (1) describing the pair of noncommutative κ-Minkowski points x̂, ŷ are
supplemented by the following additional cross-relations3

[x̂0, ŷi] = i

κ
ŷi, [ŷ0, x̂i] = i

κ
x̂i . (9)

The corresponding κ-star multiplication prescription which represents the noncommutative
space-time structure (1) and (9) looks as follows:

ϕ̂(x̂) · ϕ̂(ŷ) ↔ ϕ̂(x) 	κ ϕ̂(y) = 1

(2π)3

∫
d4p

∫
d4qei(p0x0+q0y0)+(pie

q0
2κ xi+qie

− p0
2κ yi )

×Â(p0, �p)Â(q0, �q)δ
(
C2

κ (�p, p0) − M2)δ(C2
κ (�q, q0) − M2). (10)

The formula (10) follows from the κ-star products of exponentials (3)

...eipμx̂μ ... · ...eiqμŷμ ... ↔ eipμxμ

	κ eiqμyμ = ei(p0x
0+q0y

0)+(pie
q0
2κ xi+qie

− p0
2κ yi ), (11)

where the rhs of (11) is determined by the 4-momentum coproduct


(P0) = P0 ⊗ 1 + 1 ⊗ P0, 
(Pi) = Pi ⊗ e
P0
2κ + e− P0

2κ ⊗ Pi. (12)

The field oscillators in the product ϕ̂(x) 	κ ϕ̂(y) (see (10)) carry the 4-momenta satisfying
the standard κ-deformed mass-shell condition (5). We recall that in the models of κ-statistics
presented in [3]–[5] such a standard κ-deformed mass-shell condition is imposed.

In our papers [2, 25] we modified the standard κ-star product (10) by the following
additional deformation of the product of mass-shell deltas

δ
(
C2

κ (�p, p0) − M2)δ(C2
κ (�q, q0) − M2) ⇒ δ

(
C2

κ

(�pe
q0
2κ , p0

) − M2)δ(C2
κ

(�qe− p0
2κ , q0

) − M2).
(13)

Such modification can also be introduced as the change of standard multiplication of the
fields on noncomutative space time

ϕ̂(x̂) · ϕ̂(ŷ) → ϕ̂(x̂) ·κ ϕ̂(ŷ) = 1

(2π)3

∫
d4p

∫
d4qÂ(p0, �p)Â(q0, �q)ei(px̂+qŷ)

× δ
(
C2

κ

(�pe
q0
2κ , p0

) − M2)δ(C2
κ

(�qe− p0
2κ , q0

) − M2), (14)

which is homomorphic to the following modified κ-star product of two κ-deformed free fields
on the commuting Minkowski space

ϕ̂(x)	̂κ ϕ̂(y) = 1

(2π)3

∫
d4p

∫
d4qÂ(p0, �p)Â(q0, �q)ei(p0x0+q0y0)+(pie

q0
2κ xi+qie

− p0
2κ yi )

× δ
(
C2

κ

(�pe
q0
2κ , p0

) − M2)δ(C2
κ

(�qe− p0
2κ , q0

) − M2). (15)

3 The relation (9) permits us to perform in consistency with (1) the limit x̂μ → ŷμ. Another option for constructing
the κ-deformed field theory is to assume that [x̂μ, ŷν ] = 0 (see e.g. [27]).
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1.1.2. κ-deformation of the field oscillators algebra. We see from (15) that the field
oscillators in the product ϕ̂(x)	̂κ ϕ̂(y) are put on modified mass shells (see (13)). The
unconventional feature of such an approach is the use of quantized field oscillators Â(p0, �p)

extended to the values of p = (p0, �p) which do not satisfy the κ-deformed mass-shell condition
(4)

Â(p0, �p)|C2
κ (�p,p0)=M2 ⇒ Â(p0, �p)|C2

κ (�p,p0)	=M2 . (16)

The pair of modified mass-shell conditions following from (13) is

C2
κ

(�pe
q0
2κ , p0

) − M2 = 0, C2
κ

(�qe− p0
2κ , q0

) − M2 = 0. (17)

Such a modification can be interpreted by the coproduct relation (12), where (p0, �peq0/2κ) and
(q0, �qe−p0/2κ) correspond to first and second terms in the 4-momentum addition formula for
the 2-particle state

P0 
 Â(p)Â(q) = (p0 + q0)Â(p)Â(q), (18)

Pi 
 Â(p)Â(q) := m ◦ [
(Pi)Â(p) ⊗ Â(q)] = [pie
q0/2κ + qie

−p0/2κ ]Â(p)Â(q). (19)

where m ◦ (f ⊗ g) = fg. The energy values p0, q0 satisfying (17) are equivalently described
as the solutions p

(ε,ε′)
0 (�p, �q), q

(ε,ε′)
0 (�p, �q) (ε = ±1, ε′ = ±1) of the following two coupled

equations

p
(ε,ε′)
0 = εωκ

(�peq
(ε,ε′)
0 /2κ

)
, q

(ε,ε′)
0 = ε′ωκ

(�qe−p
(ε,ε′)
0 /2κ

)
. (20)

We see from (20) that for κ-deformed 2-particle states the energy of the first particle depends
also on the 3-momenta of the energy, i.e. the modification (13) of the mass-shell condition
couples both constituents of the 2-particle state.

For a particular choice of the κ-deformed oscillator algebra we did show in [2, 25] that
by using the modified κ-star product (15) one obtains the c-number field commutator. One
obtains

[ϕ̂(x), ϕ̂(y)]	̂κ
= i
κ(x − y;M2), (21)

where


κ(x;M2) = i

(2π)3

∫
d4pε(p0)δ

(
(2κ sinh (p0/2κ))2 − �p2 − M2) eipμxμ

(22)

is the κ-deformed Pauli–Jordan commutator function proposed first in [12] after using
somewhat naive arguments.

1.2. Plan of the paper and the resume of results

In our earlier papers [1, 2, 25] we studied a definite model of κ-deformed oscillators, without
any free parameter (except the deformation parameter κ). In this paper we consider the most
general set of binary κ-deformed oscillator algebras consistent with the κ-deformed addition
law of the 4-momenta.

First, in section 2 we shall use the κ-star product (10) and the oscillators Â(p0, �p) which
lie on standard κ-deformed mass shells. We shall show that in such a case for any possible
choice of a binary oscillator algebra it is not possible to obtain the c-number value of the
field commutator. In place of formula (21) one gets the q-number field commutator bilinear
in the κ-deformed oscillators. In particular we shall discuss briefly two recent proposals of
κ-deformed oscillator algebras ([3, 4]) which fall into such a category.

In section 3 we shall consider the binary multiplication of κ-deformed free fields using
the modified κ-deformed 	-product. In such a case by performing the general transformation

4



J. Phys. A: Math. Theor. 42 (2009) 355201 M Daszkiewicz et al

in 2-particle 4-momentum space we arrive at a large class of κ-deformed oscillator algebras
depending on six arbitrary functions of 2-particle 4-momenta, which all lead to the c-number
field commutator. All such κ-oscillators are characterized by the modified energy–momentum
dispersion relation generalizing the relations (17) or (20) and can be classified by various
forms of the addition law for the 3-momenta of κ-deformed 2-particle state. The particular
choice proposed in [1, 2] was described by the Abelian addition law

�p1+2 = �p + �q, (23)

while the choices from [3, 4] (see also [16]) were characterized by the non-Abelian addition
formula4

�p1+2 = �p � �q = �pe
q0
2κ + �qe− p0

2κ . (24)

The κ-deformed oscillator algebra with the 3-momentum addition law (24) was constructed
by the use of suitable deformation of the flip operator. In section 4 we describe the general
oscillator algebras (61) (see section 3) as the composition of the most general κ-deformed
multiplication and the κ-deformed flip operation.

The κ-deformed field oscillators determine the structure of the corresponding κ-deformed
multi-particle states5. We shall only mention here that the n-particle sector of κ-deformed
Fock space is represented by suitably constructed non-factorizable clusters. We interpret such
a structure of κ-deformed Fock spaces as a result of the geometric interactions implied by
the Lie-algebraic noncommutativity of κ-deformed space time. It would be interesting to
understand how such features can be linked with the quantum gravity framework.

2. The standard κ-star product and the κ-deformed quantum fields

The aim of this section is to study the commutator of the fields (2) with the κ-star multiplication
rule (10)

[ϕ̂(x), ϕ̂(y)]	κ
= 1

(2π)3

∫
d4p d4qÂ(p)Â(q)eipx 	κ eiqyδ

(
C2

κ (p) − M2)δ(C2
κ (q) − M2)

− 1

(2π)3

∫
d4p′d4q ′Â(q ′)Â(p′)eiq ′y 	κ eip′xδ

(
C2

κ (p
′) − M2)δ(C2

κ (q
′) − M2).

(25)

We see from (25) that due to the presence of respective Dirac deltas the field oscillators
remain on the κ-deformed mass shell (4). We shall look for the generalized binary relations
of κ-deformed oscillators consistent with the κ-deformed 4-momentum addition law. We
shall show that for any choice of these binary relations determining the choice of κ-statistics,
the commutator (25) is an operator bilinear in the field oscillators. We use in this paper the
definition of a (generalized) free field as characterized by the c-number commutator function
(see e.g. [23, 24]). We obtain therefore in this section the result that by using standard on-shell
κ-oscillators Â(p0, �p) we can not obtain the free κ-deformed quantum fields.

Our demonstration of the operator nature of the commutator (25) follows from the
impossibility of the factorization under momenta integrals of any binary relation for the field
oscillators Â(p0, �p). For studying the possible factorization we shall perform the following
general O(3)-covariant change of variables separately in the first term on the rhs of (25)
(f̃ = f̃ (p, q), etc):

�p → �P(p, q) = �pf̃ + �qg̃, �q → �Q(p, q) = �pk̃ + �ql̃, (26)
4 We recall that we use the κ-Poincaré Hopf algebra which leads to the standard (see [11]) coproduct (12) for the
3-momenta.
5 The discussion of multi-particle states for n > 2 has been recently considered in [28].
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p0 → P0(p, q), q0 → Q0(p, q), (27)

with the following inverse formulae (f = f (P,Q), etc)

�P → �p(P,Q) = �Pf + �Qg, �Q → �q(P,Q) = �Pk + �Ql, (28)

P0 → p0(P,Q), Q0 → q0(P,Q), (29)

and in the second term on the rhs of (25)

�p′ → �P ′ = �p′f̃ ′ + �q ′g̃′, �q ′ → �Q′ = �p′k̃′ + �q ′ l̃′, (30)

p′
0 → P ′

0, q ′
0 → Q′

0, (31)

with the inverse formulae

�P ′ → �p′(P ′,Q′) = �P ′f ′ + �Q′g′, �Q′ → �q ′(P ′,Q′) = �P ′k′ + �Q′l′, (32)

P0 → p′
0(P ′,Q′), Q0 → q ′

0(P ′,Q′). (33)

We assume that f, g, h, k, p0, q0 in (28) and f ′, g′, h′, k′, p′
0, q

′
0 in (32) are respectively

arbitrary O(3)-invariant functions of the 4-momenta P = ( �P,P0),Q = ( �Q,Q0) and
P ′ = ( �P ′,P ′

0),Q′ = ( �Q′,Q′
0).

6

We shall look for such a choice of arbitrary functions in formulae (28), (29) and (32), (33)
which leads to the equality

eip(P,Q)x 	κ eiq(P,Q)y = eiq ′(P,Q)y 	κ eip′(P,Q)x, (34)

with κ-deformed mass-shell conditions taken into account. Formula (34) describes a necessary
condition which permits us to factorize in the commutator (25) the oscillator algebra and to
derive the c-number commutator function. We should observe that the change of variables
(26)–(32) modifies the explicit form of the product of mass-shell deltas in (25) as well. We
obtain in the first term of the rhs of (25)

δ
(
C2

κ (p) − M2) · δ
(
C2

κ (q) − M2)
→ δ

(
C2

κ (p(P,Q)) − M2) · δ
(
C2

κ (q(P,Q)) − M2), (35)

and in the second term we obtain

δ
(
C2

κ (p
′) − M2) · δ

(
C2

κ (q
′) − M2)

→ δ
(
C2

κ (p
′(P,Q)) − M2) · δ

(
C2

κ (q
′(P,Q)) − M2). (36)

One obtains7

[ϕ̂(x), ϕ̂(y)]	κ
= 1

(2π)3

∫
d4P d4QJ

(
p,q

P,Q
)

Â(p(P,Q))Â(q(P,Q))

· eip(P,Q)x 	κ eiq(P,Q)y

· δ
(
C2

κ (p(P,Q)) − M2) · δ
(
C2

κ (q(P,Q)) − M2)
− 1

(2π)3

∫
d4P d4QJ

(
p′,q ′

P,Q
)

Â(q ′(P,Q))Â(p′(P,Q))

· eiq ′(P,Q)y 	κ eip′(P,Q)x

· δ
(
C2

κ (p
′(P,Q)) − M2) · δ

(
C2

κ (q
′(P,Q)) − M2). (37)

6 We recall that the classical SO(3) Hopf algebra is a sub-Hopf algebra of the κ-deformed Poincaré Hopf algebra.
7 Because in transformed formula (25) we integrate over the variables P ′,Q′, further we shall denote them similarly
as in the first term of the commutator by P and Q.
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Let us denote by P0 = π( �P, �Q),Q0 = ρ( �P, �Q) and P ′
0 = π ′( �P, �Q),Q′

0 = ρ ′( �P, �Q) the
solutions of the following two pairs of the deformed mass-shell conditions

C2
κ (p(P,Q)) − M2 = 0, C2

κ (q(P,Q)) − M2 = 0, (38)

C2
κ (p

′(P,Q)) − M2 = 0, C2
κ (q

′(P,Q)) − M2 = 0. (39)

We shall consider first the validity of restricted relation (34) obtained by putting x0 = y0 = 0.
It is easy to check that one gets the equality of deformed 3-momenta exponentials

eip(P,Q)x 	κ eiq(P,Q)y |P0=π,Q0=ρ,(x0=y0=0)

= exp
[
i
(�p(P,Q)e

q0(P,Q)

2κ �x + �q(P,Q)e− p0(P,Q)

2κ �y)] |P0=π,Q0=ρ

= exp

[
i
( �q ′(P,Q)e

p′
0(P,Q)

2κ �y + �p′(P,Q)e− q′
0(P,Q)

2κ �x)] |P0=π ′,Q0=ρ ′

= eiq ′(P,Q)y 	κ eip′(P,Q)x |P ′
0=π ′,Q′

0=ρ ′,(x0=y0=0), (40)

if the arbitrary functions introduced in relations (28), (29) and (32), (33) satisfy the relations

f (P,Q)ep0(P,Q)/2κ = f ′(P,Q)e−p′
0(P,Q)/2κ , g(P,Q)ep0(P,Q)/2κ = g′(P,Q)e−p′

0(P,Q)/2κ ,

k(P,Q)e−q0(P,Q)/2κ = k′(P,Q)eq ′
0(P,Q)/2κ , l(P,Q)e−q0(P,Q)/2κ = l′(P,Q)eq ′

0(P,Q)/2κ ,

(41)

and P0 = π,Q0 = ρ,P0 = π ′,Q0 = ρ ′ satisfy the mass-shell conditions (38) and (39).
If we assume relations (41), then formula (34) reduces to the equality of time exponentials

ei[x0p0(P,Q)+y0q0(P,Q)]|P0=π,Q0=ρ = ei[x0p
′
0(P,Q)+y0q

′
0(P,Q)]|P0=π ′,Q0=ρ ′ . (42)

Relation (42) is satisfied for any value of x0, y0 only if

p0( �P, π; �Q, ρ) = p′
0(

�P, π ′; �Q, ρ ′), q0( �P, π; �Q, ρ) = q ′
0(

�P, π ′; �Q, ρ ′). (43)

In order to derive the restrictions following from (43) one can rewrite the relations (38) and
(39) in the form of the following identities (ε = ±1, etc)

p0( �P, π; �Q, ρ) = εωκ(�p2( �P, π; �Q, ρ)), q0( �P, π; �Q, ρ) = ηωκ(�q2( �P, π; �Q, ρ)), (44)

p′
0(

�P, π; �Q, ρ) = ε′ωκ( �p′2( �P, π; �Q, ρ)), q ′
0(

�P, π; �Q, ρ) = η′ωκ( �q ′2( �P, π; �Q, ρ)), (45)

where ωκ(�p) is defined by relation (7). We see from (44) and (45) that relation (43) can be
written as follows:8

ωκ(�p2( �P, π; �Q, ρ)) = ωκ( �p′2( �P, π; �Q, ρ)), (46)

ωκ(�q2( �P, π; �Q, ρ)) = ωκ( �q ′2( �P, π; �Q, ρ)), (47)

which implies that

�p2( �P, π; �Q, ρ) = �p′2( �P, π; �Q, ρ), �q2( �P, π; �Q, ρ) = �q ′2( �P, π; �Q, ρ). (48)

Inserting in the first formula of (48) the relations (28), (29) and (32), (33) one gets from (46)
the condition

f 2 �P2 + 2fg �P �Q + g2 �Q2 = f ′2 �P2 + 2f ′g′ �P �Q + g′2 �Q2, (49)

and analogous relation obtained by the replacements �p → �p′ and �q → �q ′ in (47). The
insertion of (41) into (49) leads to

(1 − e(p0+p′
0)/2κ)�p2( �P, π; �Q, ρ) = 0. (50)

8 Because ωκ � 0 the relations (43) require that ε = ε′ and η = η′.
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Because �p2 is positive definite, condition (49) requires for finite κ that p0( �P, π; �Q, ρ) =
−p′

0(
�P, π ′; �Q, ρ ′), q0( �P, π; �Q, ρ) = −q ′

0(
�P, π ′; �Q, ρ ′) which contradicts the relations (43).

In conclusion, both relations (41) and (43) required for the validity of the relation (34)
cannot be valid, and consequently if x0 	= y0 for on-shell oscillators, it is not possible to
factorize in the κ-deformed commutator function (25) any κ-deformed oscillator algebra.

Examples in recent literature. In recent papers [3]–[5] the following particular choice has
been made:

�p = �P(f = 1, g = 0), �q = �Q(l = 1, k = 0), p0 = P0, q0 = Q0. (51)

The restrictions on functions �p′(P,Q) and �q ′(P,Q) were obtained from the non-Abelian
composition law of 3-momenta (see (24)), considered as an identity in the variables �P and �Q,

�P � �Q = �q ′(P,Q) � �p′(P,Q), (52)

where � denotes the addition law based on the κ-deformed 4-momentum coproduct. The
second relation follows from the energy conservation law.

For our choice of the 3-momenta coproduct (see (12)) equation (52) takes the following
explicit form

�Pe
P0
2κ + �Qe− Q0

2κ = �q ′(P,Q)e
p′

0
2κ + �p′(P,Q)e− q′

0
2κ , (53)

where P0 = ±ωκ( �P),Q0 = ±ωκ( �Q) and the relations (45) should be inserted on the rhs of
(53). One gets the relation (53) as identity in particular if9

�p′(P,Q) = �P exp

(P0 + q ′
0

2κ

)
, �q ′(P,Q) = �Q exp

(
−Q0 + p′

0

2κ

)
, (54)

with the relations (45) taking the following explicit form (ε′ = ±1, η′ = ±1)

p′
0 = ε′ωκ

( �Pe
P0+q′

0
2κ

)
, q ′

0 = η′ωκ

( �Qe− (Q0+p′
0)

2κ

)
, (55)

determining p′
0 = p′

0(
�P, �Q) and q ′

0 = q ′
0(

�P, �Q) as functions of 3-momenta �P and �Q. The
energy conservation relation takes the form

P0 + Q0 = p′
0 + q ′

0 ⇔ εωκ( �P) + ηωκ( �Q) = ε′ωκ

( �Pe
P0+q′

0
2κ

)
+ η′ωκ

( �Qe− (Q0+p′
0)

2κ

)
. (56)

It should be stressed however that even if the relations (56) are valid the relations (43) crucial
for obtaining the c-number commutator cannot be satisfied.

One can point out that equations (53) do not specify completely the six functions
p′

i(P,Q), q ′
i (P,Q). In [4, 5] it has been additionally assumed that two products of the

oscillators (Â( �P)Â( �Q) and multiplied in flipped order Â( �q ′, q ′
0)Â( �p′, p′

0)) transform in the
same covariant way under the κ-deformed boost generators. It was shown that

(i) for the D = 2 κ-deformed system, there exists a unique κ-covariant choice of functions
�p′, �q ′ consistent with relations (56) and the D = 2 counterpart of (53),

(ii) in D = 4 under analogous assumptions the solution is known only in the lowest three
orders of the 1

κ
perturbation expansion.

The results obtained in [4, 5] providing the κ-covariant set of κ-statistics are very
interesting, but because they describe the states with the 4-momenta satisfying standard on-
shell conditions (38) and (39) they are not consistent with the relation (43) which is necessary
for obtaining the field commutator as a c-number.

9 In [3]–[5] a different bi-crossproduct basis of the κ-deformed Poincaré algebra is used, which leads to the coproduct


( �P ′) = �P ′ ⊗ 1 + e− P0
κ ⊗ �P ′ and suitable modification of our formulae (53) and (54).

8
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3. Modified κ-deformed star product and free κ-deformed quantum fields

We see from section 2 that the main problem in obtaining c-number field commutators is the
difficulty with getting valid relations (43). We recall that in section 2 we obtained different
on-shell values of p0(P,Q), q0(P,Q) and p′

0(P,Q), q ′
0(P,Q) following from different forms

of the κ-deformed mass-shell conditions (38) and (39). In this section we shall change the
κ-deformed star product (10) in such a way that both modified mass-shell conditions (38) and
(39) will become identical. We will provide two pairs of the same modified energy–momentum
dispersion relations for p0(P,Q), p′

0(P,Q) and q0(P,Q), q ′
0(P,Q), which allows the validity

of relations (43) and the c-number commutation function.
For that purpose we shall use a modified κ-deformed star product (15). The corresponding

field commutator of κ-deformed free fields (2) takes the form

[ϕ̂(x), ϕ̂(y)]	̂κ
= 1

(2π)3

∫
d4p d4qÂ(p)Â(q)eipx 	κ eiqy

·δ(C2
κ (�peq0/2κ , p0) − M2)δ(C2(�qe−p0/2κ , q0) − M2)

− 1

(2π)3

∫
d4p′d4q ′Â(q ′)Â(p′)eiq ′y 	κ eip′x

·δ(C2
κ (q

′
0,

�q ′ep′
0/2κ) − M2)δ(C2(p′

0,
�p′e−q ′

0/2κ) − M2). (57)

Introducing the change of momentum variables (26)–(33), one obtains the formula

[ϕ̂(x), ϕ̂(y)]	̂κ
= 1

(2π)3

∫
d4P d4QJ

(
p,q

P,Q
)

Â(p0, �Pf + �Qg)Â(q0, �Pk + �Ql)

· exp [i(p0x
0 + q0y

0)] exp [−i[( �Pf + �Qg)eq0/2κ �x + ( �Pk + �Ql)e−p0/2κ �y]]

·δ(C2
κ (p0, [ �Pf + �Qg]eq0/2κ) − M2)δ(C2

κ (q0, [ �Pk + �Ql]e−p0/2κ) − M2)
− 1

(2π)3

∫
d4Pd4QJ

(
p′,q ′

P,Q
)

Â(q ′
0,

�Pk′ + �Ql′)Â(p′
0,

�Pf ′ + �Qg′)

· exp i(p′
0x

0 + q ′
0y

0) exp[−i[( �Pk′ + �Ql′)ep′
0/2κ �y + ( �Pf ′ + �Qg′)e−q ′

0/2κ �x]]

·δ(C2
κ (q

′
0, [ �Pk′ + �Ql′]ep′

0/2κ) − M2)δ(C2(p′
0, [ �Pf ′ + �Qg′]e−q ′

0/2κ) − M2),

(58)

where J
( p,q

P,Q
)

and J
( p′,q ′

P,Q
)

describe respectively the Jacobians of transformations (28),
(29) and (32), (33). We see that by replacement (13) we matched in two consecutive terms in
(57) the asymmetry of the star product of exponentials with the asymmetry of mass-shell deltas.
After the substitution of relations (41) (expressing f ′, g′, k′, l′, p′

0, q
′
0 by f, g, k, l, p0, q0) we

see that in (58) the products of two mass-shell deltas in two consecutive terms are becoming the
same, and one can proceed to factorize the binary algebraic relations describing the κ-deformed
oscillator algebra. After inserting relations (41) the energy values p0, p

′
0 and q0, q

′
0 will satisfy

the same mass-shell conditions and therefore it will be consistent to assume relations (43).
Relations (43) provide necessary conditions for the factorization of the κ-deformed

algebra. One obtains

[ϕ̂(x), ϕ̂(y)]	̂κ
=

∫
d4P d4Q

[
J

(
p,q

P,Q
)

Â(p0, �Pf + �Qg)Â(q0, �Pk + �Ql)

− J

(
p′,q ′

P,Q
)

Â(q0, ( �Pk + �Ql)e−p0/κ)Â(p0, ( �Pf + �Qg)eq0/κ)

]
· exp [i(p0x

0 + q0y
0)] exp(−i[( �Pf + �Qg)eq0/2κ �x + ( �Pk + �Ql)e−p0/2κ �y])

·δ(C2
κ (p0, [ �Pf + �Qg]eq0/2κ) − M2)δ(C2

κ (q0, [ �Pk + �Ql]e−p0/2κ) − M2). (59)

9
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Under the integral (59) P0 ≡ π̃( �P, �Q) and Q0 ≡ ρ̃( �P �Q) describe respectively the solutions
of the following coupled pair of modified κ-deformed mass-shell conditions

C2
κ (p0, [ �Pf + �Qg]eq0/2κ) − M2 = 0, C2

κ (q0, [ �Pk + �Ql]e−p0/2κ) − M2 = 0. (60)

In order to obtain the c-number value of the commutator (58) we should postulate the
following general κ-deformed oscillator algebra

J

(
p,q

P,Q
)

Â(p0, �Pf + �Qg)Â(q0, �Pk + �Ql) (61)

− J

(
p′,q ′

P,Q
)

Â(q0, ( �Pk + �Ql)e−p0/κ)Â(p0, ( �Pf + �Qg)eq0/κ) = c − number,

where the functions p0 = p0(π̃, �P; ρ̃, �Q), q0 = q0(π̃, �P; ρ̃, �Q) do satisfy the mass-shell
equations (60). We add that the c-number on the rhs of (61) should be proportional to the
Planck constant h̄.

For classical κ-deformed fields the c-number on the rhs of the relation (61) vanishes and
in such a case relations (61) describe the κ-deformed braided oscillators. Substituting into
(59) relation (61) with a vanishing c-number one obtains the commutator of the κ-braided free
fields, describing the κ-deformation of the classical fields,

[ϕ̂cl(x), ϕ̂cl(y)]	̂κ
= 0. (62)

In quantum κ-deformed field theory the nonvanishing c-number on the rhs of equation (61)
is proportional to Dirac delta with the argument determined by the κ-deformed 3-momentum
addition law. Such a term in the general case is specified in the appendix (see also (67)).

The oscillators Â(p0, �p) which are present in relation (61) carry the 4-momentum
pμ = (p0, �p)

Pμ � Â(p0, �p) = pμÂ(p0, �p), (63)

restricted by the modified κ-deformed mass-shell conditions (60). The product of two
oscillators carry respectively the 4-momenta determined by the coproduct rule (12)

Pi �
(
Â(p0, �p)Â(q0, �q)

) =
(
pie

q0
2κ + qie

− p0
2κ

) (
Â(p0, �p)Â(q0, �q)

)
, (64)

P0 �
(
Â(p0, �p)Â(q0, �q)

) = (p0 + q0)
(
Â(p0, �p)Â(q0, �q)

)
. (65)

Applying the rules (64) and (65) to both products of oscillators occurring in (61) we should
obtain the same eigenvalues. We obtain the following relations:

(i) the class of addition laws for 3-momenta

�p(1+2) = ( �Pf + �Qg
)
eq0/2κ +

( �Pk + �Ql
)
e−p0/2κ = �p(2+1), (66)

satisfied as identity for arbitrary values of �p and �q. Such an additional law implies the
following change of the 3-momentum Dirac delta in the oscillator algebra (see also (A.6)
and (A.7) in the appendix)

δ(3)( �P − �Q) → δ(3)
([ �Pf + �Qg

]
eq0/2κ − [ �Pk + �Ql

]
e−p0/2κ

)
, (67)

(ii) the standard addition law for energy

p
(1+2)
0 = p0 + q0 = p

(2+1)
0 . (68)

10
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Relations (61) and (66) depend on four functions f, g, k, l; the values of p0 and q0

are determined from the pair of equations (60). Different choices of κ-deformed oscillator
algebras (61) can be classified by the corresponding explicit form of 3-momentum addition
laws described by (66). We add that relation (61) decomposes into four sets of bilinear relations
for κ-deformed creation and annihilation operators (see the appendix).

In order to obtain explicit formulae we shall consider now the particular cases of general
relation (61). First, we recall the algebraic scheme providing the Abelian addition law [1, 2]
and further, we present the framework providing the c-number commutator in the case of the
non-Abelian addition law (24) (see also [3]–[5]).

3.1. Abelian addition law [1, 2, 25]

In such a case the functions occurring in (61) are the following

f = e− Q0
2κ , g = 0, k = 0, l = e

P0
2κ ; p0 = P0, q0 = Q0. (69)

The mass-shell conditions (60) take the form

C2
κ (P0, �P) − M2 = 0, C2

κ (Q0, �Q) − M2 = 0, (70)

i.e. one should put the following on-shell energy values

P(±)
0 = ±ωκ( �P), Q(±)

0 = ±ωκ( �Q). (71)

One can check that from (66) and (68) we get the Abelian addition laws for 3-momenta and
energy

�P(1+2) = �P + �Q = �P(2+1), P(1+2)
0 = P0 + Q0 = P(2+1)

0 , (72)

where P0,Q0 lie on the mass shells (70). We point out here that in [1] we have chosen the
Abelian addition law (72) as the selection principle for the choice of κ-deformed statistics.

It can be shown that for the choices given by (69) the κ-deformed oscillator algebra (61)
can be written in the following standard classical form ([A,B]◦ := A ◦ B − B ◦ A)10

[aκ(P), aκ(Q)]◦ = [a†
κ(P), a†

κ (Q)]◦ = 0, [a†
κ(P), aκ(Q)]◦ = 2�κ( �P)δ(3)( �P − �Q), (73)

where the creation and annihilation operators occurring in (73) are (P(±)
0 = ±ωκ( �P); P+

0 > 0)

aκ(P) := Â
(
P(+)

0 , �P)
, a†

κ(P) := Â
(
P(−)

0 , �P) = Â
( − P(+)

0 ,− �P);
�κ( �P) ≡ κ sinh

(
ωκ( �P)

κ

)
(74)

and the κ-deformed ◦-multiplication of two oscillators was given in [1, 2].
The κ-deformed multiplication ◦ is defined in such a way that the following relation is

valid [25] :

ϕ̂(x)	̂κ ϕ̂(y) = ϕ̂(x) ◦ ϕ̂(y), (75)

where we define

ϕ̂(x) ◦ ϕ̂(y) = 1

(2π)3

∫
d4p d4qei(pμxμ+qμyμ)Â(p0, �p) ◦ Â(q0, �q) ·

·δ(C2
κ (p0, �p) − M2)δ(C2(q0, �q) − M2). (76)

Subsequently

[ϕ̂(x), ϕ̂(x)]	κ
= [ϕ̂(x), ϕ̂(y)]◦, (77)

10 In fact the rhs of second relation (73) is multiplied by the Planck constant h̄. In our consideration we put h̄ = 1.
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which after insertion of the relations (73) permits us to obtain the c-number value of the field
commutator described by the formulae (21) and (22).

One can point out that in consistency with the classical 4-momenta addition law (72)
the choice (69) is the one which provides the particular c-number field commutator function
(22) which is invariant under the classical four-dimensional translations xμ → xμ + aμ, i.e.
we obtain the κ-deformed commutator function depending on the four-coordinate difference
xμ − yμ [12].

3.2. The Non-Abelian κ-deformed addition law and the κ-deformed flip operator

We choose now the arbitrary functions in (61) as follows:

f = 1, g = 0, k = 0, l = 1; p0 = P0, q0 = Q0. (78)

The mass-shell conditions (60) take the form

C2
κ (P0, �PeQ0/2κ) − M2 = 0, C2

κ (Q0, �Qe−P0/2κ) − M2 = 0, (79)

or more explicitly

P0 = εωκ( �PeQ0/2κ), Q0 = ε′ωκ( �Qe−P0/2κ). (80)

Then one obtains from (61) the following uniquely determined κ-deformed oscillator algebra

Â(P0, �P)Â(Q0, �Q) − J

(
p′,q ′

P,Q
)

Â(Q0, �Qe− P0
κ )Â(P0, �Pe

Q0
κ ) = c − number, (81)

where the c-number in (81) is proportional to the following Dirac delta

δ(3)( �P − �Q) → δ(3)( �PeQ0/2κ − �Qe−P0/2κ), (82)

and occurs only in the creation–annihilation (or annihilation–creation) sector (see (A.6) and
(A.7) in the appendix). Formula (81) can be written as well with the use of the κ-deformed
flip operator

Â(P0, �P)Â(Q0, �Q) − τ̂κ

(
Â(P0, �P)Â(Q0, �Q)

) = c − number, (83)

where

τ̂κ

(
Â(P0, �P)Â(Q0, �Q)

) = J

(
p′,q ′

P,Q
)

Â(Q0, �Qe− P0
κ )Â(P0, �Pe

Q0
κ ), (84)

and P0,Q0 are the solutions of equations (80). Using twice the formula (84) and the property

J
( p,q

P,Q
)
J
( P,Q

p, q
) = 1 it is easy to see that the flip operator τ̂κ satisfies the condition

τ̂ 2
κ = 1. (85)

In order to adjust the set of relations (A.4)–(A.7) (see the appendix) to the choice (78)
of the functions f, g, k, l, p0 and q0 we should solve equations (80). The equation for the
solutions P(ε,ε′)

0 = P(ε,ε′)
0 ( �P, �Q) looks as follows:

P(ε,ε′)
0 = εωκ

(
�P exp

[
ε′

2κ
ωκ

(
�Q exp

( − P(ε,ε′)
0 /2κ

))])
. (86)

One obtains the second set of energy values using the relation

Q(ε,ε′)
0 ( �Q, �P; κ) = P(ε,ε′)

0 ( �P, �Q;−κ). (87)

The formulae for P(ε,ε′)
0 and Q(ε,ε′)

0 after inserting in (81) provide an explicit example of a four
set (A.4)–(A.7) (see the appendix) of the κ-deformed twisted oscillator algebra for creation
and annihilation operators. After inserting these algebraic relations in the field commutator
(59) we can show that the commutator (57) one obtains a c-number value.

12



J. Phys. A: Math. Theor. 42 (2009) 355201 M Daszkiewicz et al

4. A general algebraic structure of κ-deformed oscillator algebras

Firstly, let us consider standard undeformed theory. The standard algebra describing the
bosonic oscillators a(P), a†(Q) looks as follows:

[a†(P), a†(Q)] = [a†(P), a†(Q)] = 0, [a†(P), a†(Q)] = 2ω( �P)δ3( �P − �Q), (88)

where P ≡ (P0 = ω( �P), �P).
The κ-deformation of the algebra (88) can be introduced in two ways:

(i) The deformation of oscillator algebra (88) described by the general κ-deformed
multiplication rule.
In order to describe the general algebra (61) we introduce new κ-deformed multiplication
� generalizing the ◦-multiplication given in [1, 2] as follows:

Â(P)|P0=εωκ ( �P) � Â(Q)|P0=ε′ωκ( �P) := J

(
p(P,Q),q(P,Q)

P,Q
)

(89)

·Â(p
(ε,ε′)
0 (P,Q), �p(P,Q))Â(q

(ε,ε′)
0 (P,Q), �q(P,Q))|P0=π̃ ,Q0=ρ̃ ,

where ε = ε′ = 1 describes the creation–creation sector, ε = −ε′ the creation–
annihilation sector and ε = ε′ = −1 the annihilation–annihilation sector.

We described in such a way the first part of binary relation (61) which
depends on six arbitrary functions. One can consider a subclass of the multiplication
rule (89) which permits to describe the relation (61) as the standard oscillator
algebra (88) with the generalized κ-deformed multiplication. For such a purpose the
multiplication (89) should satisfy an additional relation permitting as well to express
the second part of the binary relation (61) by the use of the multiplication rule (89),
namely

Â(Q)|Q0=ε′ωκ( �Q) � Â(P)|P0=εωκ ( �P) = J

(
p′(P,Q),q ′(P,Q)

P,Q
)

·Â
(
q

(ε,ε′)
0 (P,Q), �q(P,Q)e−p

(ε,ε′)
0 (P,Q)/κ

)
·Â

(
p

(ε,ε′)
0 (P,Q), �p(P,Q)eq

(ε,ε′)
0 (P,Q)/κ

)
|P0=π̃ ,Q0=ρ̃ . (90)

The validity of (90) restricts six arbitrary functions occurring in (61) in the following way:

pT
i (P,Q) ≡ pi(Q,P) = qi(P,Q)e−p

(ε,ε′)
0 (P,Q)/κ ,(

p
(ε,ε′)
0

)T
(P,Q) = q

(ε,ε′)
0 (P,Q), (91)

qT
i (P,Q) ≡ qi(Q,P) = pi(P,Q)eq

(ε,ε′)
0 (P,Q)/κ ,(

q
(ε,ε′)
0

)T
(P,Q) = p

(ε,ε′)
0 (P,Q). (92)

The algebra (61) with the choice (91) and (92) can be written as follows:

[a(P), a(Q)]� = [a†(P), a†(Q)]� = 0, [a†(P), a(Q)]� = c − number. (93)

The relations (93) describe the class of κ-deformed oscillator algebras with generalized
κ-deformed multiplication, parametrized by three arbitrary functions solving the
conditions (91) and (92).

In particular if p0 = P0, q0 = Q0 and we choose (see (69))

�p(P,Q) = e− Q0
2κ �P, �q(P,Q) = e

P0
2κ �Q, (94)

13
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we obtain

�pT (P,Q) = e− P0
2κ �Q, �qT (P,Q) = e

Q0
2κ �P, (95)

where P0 = P(ε)
0 ,Q0 = Q(ε′)

0 .
We see that the choice (69) which provides the first example of κ-multiplication [1]
obviously satisfies the conditions (91) and (92).

(ii) The general κ-deformed flip operator.
Let us describe the commutator of the two standard bosonic oscillators as follows:

[Â(P), Â(Q)] ≡ Â(P)Â(Q) − τ̂0[Â(P)Â(Q)] = c − number, (96)

where P0 = εω( �P) and τ̂0(ÂB̂) = B̂Â. In particular if n = 2, the symmetrization
operator Sn is described in terms of the flip operator as follows:

S
(0)
2 = 1

2 (1 + τ̂0). (97)

One can look for the κ-deformation of the classical flip operator τ̂0, which leads to the
following κ-deformation of the commutator (96)

[Â, B̂] → [Â, B̂]τ̂κ
:= ÂB̂ − τ̂κ ÂB̂, (98)

where we assume that

[τ̂κ ,
(Pμ)] = 0. (99)

We supplement the multiplication (89) with the following definition of the κ-deformed
flip operation

τ̂κ

[
Â(P)|P0=εωκ ( �P) � Â(Q)|Q0=ε′ωκ( �Q)

]
≡ τ̂κ

[
J

(
p(P,Q),q(P,Q)

P,Q
)

Â
(
p

(ε,ε′)
0 (P,Q), �p(P,Q)

)
Â

(
q

(ε,ε′)
0 (P,Q), �q(P,Q)

)] |P0=π̃ ,Q0=ρ̃

:= J

(
p′(P,Q),q ′(P,Q)

P,Q
)

Â
(
q

(ε,ε′)
0 (P,Q), �q(P,Q)e−p

(ε,ε′)
0 (P,Q)/κ

)
·Â(

p
(ε,ε′)
0 (P,Q), �p(P,Q)eq

(ε,ε′)
0 (P,Q)/κ

)|P0=π̃ ,Q0=ρ̃ , (100)

consistently with (99). Further, one can show that for any choice of the multiplication �
we obtain

τ̂ 2
κ = 1. (101)

In particular one can consider a κ-statistics described only by the κ-deformed flip
operator with the standard undeformed multiplication rule

Â(P) � Â(Q) ≡ Â(P)Â(Q). (102)

Such a case is obtained by putting f = l = 1, g = k = 0 and p0 = P0, q0 = Q0, and the
flip operator is uniquely defined as follows (see (84)):

τ̂κ [Â(P)Â(Q)] = J

(
p′,q ′

P,Q
)

Â
(
Q0, �Qe− P0

κ

)
Â

(
P0, �Pe

Q0
κ

)
. (103)

(iii) The most general κ-deformed oscillator algebra
We shall consider now the most general κ-deformed oscillator algebra (61), which for the
energy–momentum dispersion relation described by the mass-shell conditions (60) leads
to the c-number commutator function. It appears that such an algebra can be described by
the composition of the multiplication (89) and the κ-deformed flip (100) in the following
way:

(1 − τ̂κ )
[
Â(P)|P0=εωκ ( �P) � Â(Q)|Q0=ε′ωκ( �Q)

] = c − number. (104)

14



J. Phys. A: Math. Theor. 42 (2009) 355201 M Daszkiewicz et al

If we describe the 2-particle sector of the standard bosonic Hilbert space H2 as a
symmetrized tensor product of 1-particle Hilbert spaces H1,

H2 = S2 ◦ (H1 ⊗ H1), (105)

the κ-deformed multiplication modifies the tensor product as follows:

H1 ⊗ H1 → H1 ⊗κ H1, (106)

where ⊗κ is obtained from the ‘braided multiplication’ � of oscillators (see (89)) and
κ-deformed twist τ̂κ changes the symmetrization operator

S2 → Sκ
2 = 1

2 (1 + τ̂κ ). (107)

In this paper we limited our considerations to the most general binary algebraic relations.
Only in the case of algebra (61) with the particular choice of arbitrary functions given by
(69) (see [1, 2]) the products of arbitrary numbers of κ-deformed creation and annihilation
operators have been introduced, and all sectors of the corresponding κ-deformed Hilbert space
have been considered.

5. Final remarks

In this paper we consider the general structure of κ-deformed binary oscillator algebras and
their applicability for the description of free κ-deformed quantum fields, with c-number
commutator functions. Our considerations generalize the recent examples of the κ-deformed
statistics studied by the present authors [1, 2, 25], Arzano and Marciano [3], Young and Zegers
[4, 5] and Govindarajan et al [16]. We consider two different classes of the κ-deformed
oscillators which differ by their κ-deformed energy–momentum relations: in section 2 we
assume that the oscillators Â(p0, �p) are put on the standard κ-deformed mass shell (4), and
in section 3 we modify the standard κ-deformed mass-shell conditions in a way providing
c-number field commutators.

The basic results obtained in this paper are the following:

(i) We considered in section 2 the algebra of deformed oscillators on the κ-deformed mass-
shell, corresponding to noncommutative field theory with standard multiplication of
noncommutative fields, via standard κ-star product (10). In such a case for arbitrary
choice of the κ-deformed oscillator algebra, the κ-deformed quantum fields are not free.
One can show that the commutator function is necessarily bilinear in field operators.

(ii) We studied in section 3 the general algebra of oscillators with modified κ-deformed mass-
shell conditions (see (79)), corresponding to noncommutative field theory with a modified
multiplication law of noncommutative fields (see (14)) represented by nonstandard κ-star
product (15). In such a case one obtains for large class of κ-deformed oscillator algebras
(see (61) and Appendix), the κ-deformed free quantum fields which are characterized by
the c-number commutator function. It should be stressed that only in such a case can
one look for the formulation of the κ-deformed perturbative description of interacting
κ-deformed field theory and consider the suitable generalization of the Feynman diagram
technique.

(iii) In section 4 we did show that the general κ-deformed statistics providing κ-deformed
quantum fields with c-number commutators is obtained by the composition of general
κ-deformed multiplication and the κ-deformed flip operator.
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We point out finally that in this paper we do not discuss the κ-covariance of the κ-
deformed oscillator algebras. The results of [4, 5] suggest however that the κ-covariance is
not consistent with the relation (43) which we had to postulate in order to obtain the c-number
κ-fields commutator. It appears therefore that the freedom of choice present in the formula
(61) might not permit to obtain both the manifest κ-covariance and the c-number commutator
function.
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Appendix A. general algebra of κ-deformed creation and annihilation operators

One can rewrite the mass-shell conditions (60) as the set of four nonlinear algebraic
equations describing eight classes of energy–momentum dispersion relations p0 ≡
p

(ε,ε′)
0 (π̃, �P; ρ̃, �Q), q0 ≡ q

(ε,ε′)
0 (π̃, �P; ρ̃, �Q) (ε = ±1, ε′ = ±1)

p0 = εωκ

(
[ �Pf + �Qg]eq0/2κ

)
, q0 = ε′ωκ

(
[ �Pk + �Ql]e−p0/2κ

)
, (A.1)

where

lim
κ→∞ p

(ε,ε′)
0 = εω(�p), lim

κ→∞ q
(ε,ε′)
0 = ε′ω(�q). (A.2)

The values p
(1,ε′)
0 > 0,

(
q

(ε,1)
0 > 0

)
describe the on-shell values of p0(q0) which select

Â
(
p

(1,ε′)
0 , �p)

, Â
(
q

(ε,1)
0 , �q)

as κ-deformed creation operators; the on-shell energy values

p
(−1,ε′)
0 < 0,

(
q

(ε,−1)
0 < 0

)
are required to define the κ-deformed annihilation operators

Â
(
p

(−1,ε′)
0 , �p)

, Â
(
q

(ε,−1)
0 , �q)

. If we denote

p(ε,ε′) = (
p

(ε,ε′)
0 , �p(π̃, �P; ρ̃, �Q)

)
, q(ε,ε′) = (

q
(ε,ε′)
0 , �q(π̃, �P; ρ̃, �Q)

)
, (A.3)

one can rewrite the relations (61) as the four set of relations describing creation–creation,
creation–annihilation, annihilation–creation and annihilation–annihilation sectors.

If we insert in proper way the on-shell energy values p
(ε,ε′)
0 , q

(ε,ε′)
0 (see (A.1) and (A.3))

the relations (61) decompose into the following set of relations:

(i) the creation–creation algebra

J

(
p(++),q(++)

P,Q
)

Â(p
(++)
0 , �Pf + �Qg) · Â(q

(++)
0

�Pk + �Ql)

= J

(
p′(++),q ′(++)

P,Q
)

Â
(
q

(++)
0 , [ �Pk + �Ql]e−p

(++)
0 /κ

) · Â
(
p

(++)
0 , [ �Pf + �Qg]eq

(++)
0 /κ

)
,

(A.4)

(ii) the annihilation–annihilation algebra

J

(
p(−−),q(−−)

P,Q
)

Â
(
p

(−−)
0 , �Pf + �Qg

) · Â
(
q

(−−)
0

�Pk + �Ql
)

= J

(
p′(−−),q ′(−−)

P,Q
)

Â
(
q

(−−)
0 , [ �Pk + �Ql]e−p

(−−)
0 /κ

) · Â
(
p

(−−)
0 , [ �Pf + �Qg]eq

(−−)
0 /κ

)
,

(A.5)
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(iii) the creation–annihilation algebra

J

(
p(+−),q(−+)

P,Q
)

Â
(
p

(+−)
0 , �Pf + �Qg

) · Â
(
q

(−+)
0

�Pk + �Ql
)

−J

(
p′(+−),q ′(−+)

P,Q
)

Â
(
q

(−+)
0 , [ �Pk + �Ql]e−p

(+−)
0 /κ

) · Â
(
p

(+−)
0 , [ �Pf + �Qg]eq

(−+)
0 /κ

)
= 2N(+−)

κ ( �P, �Q)δ(3)
[
( �Pf + �Qg)eq

(−+)
0 /κ − ( �Pk + �Ql)e−p

(+−)
0 /κ

]
, (A.6)

(iv) the annihilation–creation algebra

J

(
p(−+),q(+−)

P,Q
)

Â
(
p

(−+)
0 , �Pf + �Qg

) · Â
(
q

(+−)
0

�Pk + �Ql
)

−J

(
p′(−+),q ′(+−)

P,Q
)

Â
(
q

(+−)
0 , [ �Pk + �Ql]e−p

(−+)
0 /κ

) · Â
(
p

(−+)
0 , [ �Pf + �Qg]eq

(+−)
0 /κ

)
= 2N(−+)

κ ( �P, �Q)δ(3)
[
( �Pf + �Qg)eq

(+−)
0 /κ − ( �Pk + �Ql)e−p

(−+)
0 /κ

]
. (A.7)

The 3-momentum Dirac delta in (A.6) and (A.7) describes in accordance with formula (66)
the κ-deformed 3-momentum conservation law for the process of creation/annihilation
of field quanta with the 3-momentum ( �Pf + �Qg) and annihilation of the quanta with the
momentum ( �Pk + �Ql).
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